a2 United States Patent

US009136020B2

(10) Patent No.: US 9,136,020 B2

Asano et al. 45) Date of Patent: Sep. 15, 2015
(54) SEMICONDUCTOR MEMORY DEVICE (56) References Cited
(71) Applicant: KABUSHIKI KAISHA TOSHIBA, U.S. PATENT DOCUMENTS
Minato-ku (JP)
8,448,034 B2* 52013 Asanoetal. ... 714/747
(72) Inventors: Shigehiro Asano, Kanagawa (JP); 8453,033 B2* 52013 .YOShu otal 7147758
Kenichiro Yoshii, Tokyo (JP); Kazuhiro (Continued)
Fukutomi, Kanagawa (JP); Shinichi
Kanno, Tokyo (JP) FOREIGN PATENT DOCUMENTS
(73) Assignee: Kabushiki Kaisha Toshiba, Minato-ku ig %882%%?3; ggggg
(IP) JP 2008-287404 11/2008
WO WO 2009/042554 Al 4/2009
(*) Notice: Subject to any disclaimer, the term of this WO WO 2009/110301 Al 9/2009
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days. OTHER PUBLICATIONS
David A. Patterson, et al., “A Case for Redundant Arrays of Inexpen-
(21) Appl. No.: 14/313,782 sive Disks (RAID)”, UC Berkeley Technical Report UCB/CSD-87-
(22) Filed: Jun.24,2014 391, 1988, pp. 109-116.
(Continued)
(65) Prior Publication Data
US 2014/0310576 A1l Oct. 16, 2014 Primary Examiner — Guy Lamarre
(74) Attorney, Agent, or Firm — Oblon, McClelland,
Related U.S. Application Data Maier & Neustadt, L.L.P.
60) Division of application No. 13/868,620, filed on Apr.
0 23, 2013, oow Dat. No. 8,788,900, which s 67 ABSTRACT
continuation of application No. 12/888,822, filed on According to one embodiment, a semiconductor memory
Sep. 23, 2010, now Pat. No. 8,448,034. device includes semiconductor memory chips in which data
requested to be written. The data has one or more pieces of
(30) Foreign Application Priority Data first data in a predetermined unit. The device includes a write
controller that writes the first data and redundancy informa-
Feb. 12,2010 (JP) ceoeviveiiiiicece. 2010-029114 tion calculated by using a predetermined number of pieces of
the first data and used for correcting an error in the predeter-
(51) Int.Cl. mined number of pieces of the first data into different semi-
GIIC 29/52 (2006.01) conductor memory chips; and a storage unit that stores iden-
GO6F 11/10 (2006.01) tification information and region specifying information so as
(52) US.CL to be associated with each other. The identification informa-
CPC ..o G11C 29/52 (2013.01); GOGF 11/1008 tion associates the first data and the redundancy information,
(2013.01); GOGF 11/1068 (2013.01) and the region specifying information specifies a plurality of
(58) Field of Classification Search storage regions in the semiconductor memory chips to which

CPC ... GOG6F 2212/1036; GOGF 12/0246;
GOGF 11/108; GOG6F 11/1068; GO6F 11/1008
USPC i 714/720, 733,758

See application file for complete search history.

REFER TO FORWARD-LOOKUP
TABLE WITH LOGICAL BLOCK
ADDRESS

CORRECT DATA WITH PAGE ECC

the pieces of the first data and the redundancy information
associated with each other are written.

2 Claims, 11 Drawing Sheets

RECEIVE READ COMMAND s
FROMHOST

s21
TS READING O NO
PAGE UNIT BAGIS? 2
WHEN TARGER THAN PAGE UNIT,
DIVIDE DATA TO PLURAL PIECES'
‘OF READ DATA IN PAGE UNITS

'READ SET OF [OGICAL BLOTKS

CORRECT ERRONEOUS DATA,
AND SEND CORRECTED DATA TO
DATA BUFFER

TRANSHIT GATA. sz0
FROM DATA BUFFER 10 HOST

US 9,136,020 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2007/0036010 Al
2009/0259919 Al
2010/0312948 Al
2011/0214033 Al

OTHER PUBLICATIONS

2/2007 Sato
10/2009 Kilzer et al.
12/2010 Yano et al.

9/2011 Yoshii et al.

James S. Plank, “A Tutorial on Reed-Solomon Coding for Fault-
Tolerance in RAID-like Systems”, Technical Report CS-96-332,

Department of Computer Science, University of Tennessee, Feb. 19,
1999, 19 pages.

Mendel Rosenblum, et al., “The LFS Storage Manager”, The Sum-
mer *90 USENIX Technical Conference, Jun. 1990, 16 pages.
Office Action issued Dec. 6, 2011, in Japanese Patent Application No.
2010-029114 (with English-language translation).

Extended European Search Report issued Jul. 25, 2011, in Patent
Application No. 11153978.9.

Office Action issued Dec. 12, 2013 in Chinese Patent Application No.
201110036760.4 (with English Translation).

* cited by examiner

US 9,136,020 B2

Sheet 1 of 11

FIG.1

Sep. 15, 2015

U.S. Patent

|||

3 L T "

[S mw h

S| [O w i

S 128 ¥ITIOHINOO ANYN — ANVYN |T |

&) i ©

L 11| |

~ 0 :

wn n]

e “ s

N — YITIOULNOD ANVYN — ONVN | T
M=o)) ;
O |l w ~ % '
o 1 A o o |

5 5 —{ Y3TIOULNOD ANVYN —| ONYN | T

Q 50 O o)
= 5 3 "

ke '

= % Ay o™ !

=5 — Y3TTOMINOD ANYN — aNVN | &

© oM m m

M~ [e,0] i

—| n ¥s} !
w0 o A s ~— 1
“ @ — YITIOMLNOD ANYN [— ONVN | L !
%) < S |

O te] o '

% — e o !

o — Y¥37IOHINOD ANVN |— ANVN | T |

0
“ JOV4HILNI SYS/VLVS !

U.S. Patent Sep. 15, 2015 Sheet 2 of 11 US 9,136,020 B2

FIG.2

INVALID PAGE (WHITE)
AFTER REWRITE VALID PAGE (GRAY)

BEFORE

COMPACTION
ERASED BLOCK

DURING

COMPACITION
ERASED BLOCK

AFTER

COMPACTION

-
SPACE FOR NEW WRITING

U.S. Patent Sep. 15, 2015 Sheet 3 of 11 US 9,136,020 B2

FIG.3

560

HOST INTERFACE UNIT
561 5‘67
BUFFER CONTROLLER DATA BUFFER
564
COMPACTION |
CANDIDATE DETECTOR
<68
COMPACTION READ
QUEUE
AT = -
— MANAGEMENT TABLE
ADDRESS TRANSLATION UNIT — UPDATING UNIT
| 569
563 MANAGEMENT TABLE
CH ALLOCATING UNIT FORWARD-
T T T 1 1 | | LOOKUP TABLE ||
! M g\ M
—n v\ T BIT VECTOR
— | TABLE
=) = N) -)
I I I I T I
sl |g| |e] |g] |g] |&
/j e o o 1d o ned
5] 1N 1l L 58] L
50 A — — = | A
- | - - | .|
O O O O O O
o i o i [0'd e
= = = -~ = =
ps Z zZ Z zZ P
O O O O @) O
(@] O O (@) Q @]
(o) =) 0O Q o)]
2z Z =z =z Z Z
< < < < < <
pd P Z Z P prd
<B6B6A |2668 IZSSC |266D]266E *B6F
() 0))] e
pd prd = pd =z pd
<L << < < < <
Z Z Z Z =z Z

¢58A ¢58B ¢58C <¢58D ¢°58E ¢58F

U.S. Patent Sep. 15, 2015 Sheet 4 of 11 US 9,136,020 B2

FIG.4

LOGICAL BLOCK
ADDRESS
é FIRST STAGE ENTRIES IN LBA TABLE
LBATABLE LOGICAL BLOCK NUMBER [CH|PAGE NUMBER
|- "SECOND STAGE
LOGICAL-PHYSICAL
TRANSLATION TABLE
A J
LOGICAL | _ CHO CH1 CH2 CH3 chH4 CH5

BLOCK | PHYSICAL
NUMBER BLOCK

PHYSICAL | PHYSICAL | PHYSICAL | PHYSICAL | PHYSICAL
BLOCK BLOCK BLOCK BLOCK BLOCK

BLOCKIN
NAND OF CH2

U.S. Patent Sep. 15, 2015 Sheet 5 of 11 US 9,136,020 B2

FIG.5

NUMBER OF PAGES IN INDICOEG‘S SKgEBSER OF
BLOCK IS 320 IN EXAMPLE :
A

(\ /

iftlot] olo]1 310
o[1]o]1]o]o 1]1]1 234
LOGICAL BLOCK
NUMBER BIT VECTOR COUNTER
oj1joft]1fo] 0]1]1 120
1[1]o]1]o]1 1]1]o 100
SEQUENCE OF
PHYSICAL BLOCKS
LOGICAL
DATA BLOCK | PAGEECC
ADDRESS

U.S. Patent Sep. 15, 2015 Sheet 6 of 11 US 9,136,020 B2

TIMEtt TIMEt2 TIMEt3 TIME#4 TIMEtS5
CHO —>{D1 D1 D1 D1 D1
CH1 —>{D2 D2 D2 D2
CH2 —>D3 D3 D3
CH3 —>{D4 D4
CH4 —>{D5
CH5 P
CHO / | PAGE DATA PAGE ECC
CH1 / / § PAGE DATA PAGE ECC
CH2 / / / i PAGE DATA PAGE ECC
CH3 / i PAGE DATA PAGE ECC
CH4 / | PAGE DATA PAGE ECC

CH5 ;) PAGE DATA PAGE ECC

U.S. Patent Sep. 15, 2015 Sheet 7 of 11 US 9,136,020 B2

FIG.9
(sTART)
RECEIVE WRITE COt/lMAND FROM HOST S1
S2
IS WRITING ON NO
PAGE UNIT BASIS? ! 53
— WHEN LARGER THAN PAGE UNIT,

DIVIDE DATA TO PLURAL PIECES
OF WRITE DATA IN PAGE UNITS

<

Y

RECEIVE DATA CORRESPONDING TO WRITING s4
FROM HOST AND WRITE IT TO DATA BUFFER

REFER TO FORWARD-LOOKUP TABLE
WITH REQUIRED LOGICAL ADDRESS S5
AND STORE RESULT AS OLD PHYSICAL BLOCK
ADDRESS

v

DETERMINE WRITE CHANNEL S6
IN ROUND-ROBIN MANNER

v

SEND DATA TO CHANNEL SPECIFIED
BY DATA BUFFER AND WRITE IT TO PAGE S7

IN NAND POINTED BY WRITE POINTER

| UPDATE WRITE POINTER |‘\SB
v

REWRITE ENTRY OF FORWARD-LOOKUP TABLE
INDICATED BY LOGICAL BLOCK ADDRESS S8
WITH NEW PHYSICAL BLOCK ADDRESS

y

CLEAR BIT VECTOR CORRESPONDING TO
OLD PHYSICAL BLOCK ADDRESS S10
PAGE COUNTER
|‘S1 1

AND DECREMENT CORRESPONDING VALID
T r

SET BIT VECTOR CORRESPONDING TO
NEW PHYSICAL BLOCK ADDRESS
AND INCREMENT CORRESPONDING VALID
PAGE COUNTER

!
(END)

U.S. Patent

Sep. 15, 2015 Sheet 8 of 11
FIG.10
TME | ERASEDBLOCK
TIME t1 ---------------------------- D1
TIME {2 ---------------------- D6 | D1
TIME t3 D11| D6 | D1
TIME t4 --------- D16{D11| D6 | D1

POINTER

US 9,136,020 B2

POINTER

POINTER

POINTER

U.S. Patent Sep. 15, 2015

Sheet 9 of 11 US 9,136,020 B2

FIG.11

(START '

RECEIVE READ COMMAND
FROM HOST

IS READING ON

S20

NO

PAGE UNIT BASIS?

8/22
WHEN LARGER THAN PAGE UNIT,
DIVIDE DATA TO PLURAL PIECES
OF READ DATA IN PAGE UNITS

\ 4

REFER TO FORWARD-LOOKUP

TABLE WITH LOGICAL BLOCK
ADDRESS

Y

ACCESS NAND WITH PHYSICAL
BLOCK ADDRESS SHOWN IN
FORWARD-LOOKUP TABLE
AND READ DATA TO DATA BUFFER
ON DRAM

CORRECTABLE

-J\SZB

S24

NO

WITH PAGE ECC?

YES

8/27
REFER TO LOGICAL-TO-PHYSICAL
CONVERSION TABLE
AND DETERMINE LOGICAL BLOCK
USED AT TIME OF GENERATING
ERROR CORRECTION

!

! 3/26 BETWEEN CHANNELS
| CORRECT DATA WITH PAGE ECC | ! s/zs
READ SET OF LOGICAL BLOCKS

FROM NAND,
CORRECT ERRONEOQUS DATA,
AND SEND CORRECTED DATA TO
DATA BUFFER

v
TRANSMIT DATA
FROM DATA BUFFER TO HOST

END

S29

U.S. Patent Sep. 15, 2015 Sheet 10 of 11 US 9,136,020 B2

CHO / | PAGE DATA PAGE ECC
CH1 / i PAGE DATA PAGE ECC
CH2 / / § PAGE DATA PAGE ECC
CH3 | / i | PAGE DATA | PAGE ECC |
CH4 \ \ / i PAGE DATA PAGE ECC
\ }‘ j, '
‘ T
CH5 i PAGE DATA PAGE ECC

U.S. Patent Sep. 15, 2015 Sheet 11 of 11 US 9,136,020 B2

FIG.13
{ START ’
M=4096 (MAXIMUM VALUE) K=0 S40

-
A 4

READ ONE VALID PAGE COUNTER I\~S41

VALID PAGE COUNTER < M? 1 3/43 ’
- REPLACE M WITH VALUE OF
VALID PAGE COUNTER
RECORD PRESENT ROW IN K
“« |)
Y S44

ARE ALL OF VALID NO

PAGE COUNTERS 7 S45
CHECKED? /
K=K+1 I
L

SET K AS INDEX OF
LOGICAL-TO-PHYSICAL TABLE OF 546
COMPACTION CANDIDATE

READ ALL OF VALID PAGES INDICATED
BY BIT VECTORS FROM LOGICAL BLOCK
IN LOGICAL-TO-PHYSICAL CONVERSION
TABLE INDICATED BY INDEX (K) s47
TO DATA BUFFER, AND EXTRACT
LOGICAL BLOCK ADDRESS
CORRESPONDING TO VALID PAGE
FROM DATA

A 4
READ VALID PAGE FROM DATA BUFFER
AND WRITE IT TO LOGICAL BLOCK ADDRESS
(EXTRACTED IN PRECEDING STEP) OF
VALID PAGE

548

ARE ALL OF VALID PAGES
IN DATA BUFFER READ?

END

US 9,136,020 B2

1
SEMICONDUCTOR MEMORY DEVICE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a divisional of U.S. application Ser. No.
13/868,620 filed Apr. 23, 2013, which is a continuation of
U.S. application Ser. No. 12/888,822 filed Sep. 23, 2010, and
is based upon and claims the benefit of priority from the prior
Japanese Patent Application No. 2010-029114, filed on Feb.
12, 2010; the entire contents of each of which are incorpo-
rated herein by reference.

FIELD

Embodiments described herein relate generally to a semi-
conductor memory device.

BACKGROUND

It is known that probabilistic failures occur in a semicon-
ductor storage chip. The failures include a failure of a
memory cell such as a soft error caused by an alpha beam and
a failure in a larger unit such as a failure in a read circuit or an
input/output buffer (/O buffer). For a failure in a memory
cell, conventionally, by adding redundant information such as
an Error correction code (ECC)to data, erroneous data caused
by the failure can be corrected within a predetermined num-
ber of errors in a predetermined unit. For a failure in a larger
unit such as a failure in a reading circuit or an I/O buffer, the
number of errors is extremely large, and it is difficult to
perform an error correction by a realistic circuit scale.

In a system employing a number of Hard Disk Drives
(HDDs), a failure in an HDD have become a problem. Redun-
dant Array of Inexpensive Disks (RAID) is widely known as
atechnique for addressing such failure in the HDD unit basis
by using an error correction code constituted by a plurality of
HDDs (refer to, for example, “A Case for Redundant Arrays
of Inexpensive Disks (RAID)”, UC Berkeley Technical
Report UCB/CSD-87-391, 1987). In this technique, by writ-
ing data to a plurality of HDDs and storing redundant infor-
mation obtained by using the data into one of the HDDs, an
error correction code is constituted by the plurality of HDDs.
As a method of restoring data with RAIDs when a plurality of
HDDs become faulty, a method in which a Reed Solomon
code is used is also known (refer to, for example, “A Tutorial
on Reed-Solomon Coding for Fault-Tolerance in RAID-like
Systems”, James S. Plank, Technical Report CS-96-332,
Department of Computer Science University of Tennessee).

However, in a semiconductor memory device using a large
number of semiconductor storage chips as memory chips,
even when an error correction code (ECC) for repairing a
failure in a memory cell, the failure in a memory chip cannot
be prevented. As a result, it may become a failure of the
semiconductor memory device. To address a failure in a
memory chip, it is considered to constitute an error correction
code by a plurality of memory chips in a manner similar to
HDDs. In this method, however, for each writing operation,
writing to a memory chip in which redundant information is
written is performed for updating redundant information.
Concretely, in RAIDs of HDDs, for example, when an error
correction code is constituted by four HDDs A, B, C, and D in
which data is written and one HDD P in which redundant
information is written, the writing operation is performed as
follows. If data is written in the HDD A out of the HDDs A, B,
C, and D, writing to the HDD P is also performed for updating
redundant information.

10

15

20

25

30

35

40

45

50

55

60

65

2

Meanwhile, a semiconductor memory element of the
NAND type (referred to as NAND memory) used for a semi-
conductor memory device is widely used as a semiconductor
memory chip of a Solid State Drive (SSD) because the area
per bitis small and it is nonvolatile, but it is widely known that
the number of write times is limited. Consequently, it is
necessary to reduce the number of write times in order to
increase design life of a semiconductor memory device.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 11is a diagram illustrating a hardware configuration of
a semiconductor storage device 50 of an embodiment;

FIG. 2 is a conceptual diagram for explaining compaction;

FIG. 3 is a diagram illustrating a functional configuration
of the semiconductor storage device 50;

FIG. 4 is a diagram illustrating a data configuration of a
forward-lookup table;

FIG. 5 is a diagram illustrating a data configuration of a bit
vector table;

FIG. 6 is a diagram illustrating data to be written;

FIG. 7 is a diagram for explaining writing operation per-
formed by round-robin manner;

FIG. 8 is a diagram for explaining the configuration of an
error correcting code;

FIG. 9 is a flowchart showing a procedure of writing data to
be written;

FIG. 10 is a diagram illustrating a state where data to be
written is written with lapse of time;

FIG. 11 is a flowchart showing a procedure of reading data;

FIG. 12 is a diagram showing a state where data in which
abnormality occurs is restored; and

FIG. 13 is a flowchart showing a procedure of compaction
process.

DETAILED DESCRIPTION

In general, according to one embodiment, a semiconductor
memory device includes a plurality of semiconductor
memory chips in which data requested to be written by an
information processing apparatus is described. The data has
one or more pieces of first data in a predetermined unit. The
semiconductor memory device includes a write controller
configured to write the pieces of the first data in the predeter-
mined unit and redundancy information into different semi-
conductor memory chips, the redundancy information being
calculated by using a predetermined number of pieces of the
first data and being used for correcting an error in the prede-
termined number of pieces of the first data; and a storage unit
configured to store therein identification information and
region specifying information so as to be associated with each
other, the identification information associating the predeter-
mined number of pieces of the first data and the redundancy
information, and the region specifying information specify-
ing a plurality of storage regions in the semiconductor
memory chips to which the pieces of the first data and the
redundancy information associated with each other are writ-
ten.

Exemplary embodiments of a semiconductor storage
device will be described in detail below with reference to the
appended drawings.

A hardware configuration of the semiconductor memory
device according to the embodiment will be described with
reference to FIG. 1. A semiconductor memory device 50
includes a processor 51, a boot Read Only Memory (ROM)
52, an SATA/SAS interface 55, a memory controller 53, a
Dynamic Random Access Memory (DRAM) 54, NAND con-

US 9,136,020 B2

3

trollers 57A to 57F, a plurality of semiconductor memory
elements (NAND) 58 A to 58F, and a bus 56 connecting those
components. Inthe case where it is unnecessary to distinguish
the NAND controllers 57A to 57F from one another, they may
be simply described as the NAND controllers 57. In the case
where it is unnecessary to distinguish the semiconductor
memory elements 58A to 58F from one another, they may be
simply described as the semiconductor memory elements 58.

The SATA/SAS interface 55 controls communication with
a host as a high-order apparatus of the semiconductor
memory device 50 under control of the processor 51. The boot
ROM 52 stores a program which is executed at the turn on the
power source. Various system programs are stored in the
semiconductor memory elements 58. The processor 51 reads
the program from the boot ROM 52 at the turn-on of the
power source, executes it, transfers the various system pro-
grams stored in the semiconductor memory elements 58 to
the DRAM 54 in accordance with the program, and executes
the system program on the DRAM 54, thereby controlling the
entire semiconductor memory device 50 to realize various
functions. Concretely, the processor 51 interprets a command
sent from the host via the SATA/SAS interface 55 and,
according to the command, controls writing of data to the
semiconductor memory elements 58 and reading of data from
the semiconductor memory elements 58.

The memory controller 53 controls the DRAM 54. The
DRAM 54 stores various data and various programs. In the
embodiment, the DRAM 54 stores a forward-lookup table
and a bit vector table which will be described later. The
NAND controllers 57 control the semiconductor memory
elements 58 and include an error correction circuit.

The semiconductor memory element 58 corresponds to a
semiconductor chip. For example, it is a memory element
used in an NAND-type flash memory. Such semiconductor
memory elements 58 cannot read/write at random but can
perform reading/writing in unit called a page. A plurality of
pages form a storage region in unit called a block. It is
assumed here that one page is made of 4 KB, and one block is
formed by 64 pages. Each of the semiconductor memory
elements 58 is constituted by a plurality of blocks. In the
embodiment, as shown in FIG. 1, the number of semiconduc-
tor memory elements 58 is six. Channels (CHO to CH5) are
allocated to the semiconductor memory elements 58 A to 58F,
respectively. The channel (CH5) among the channels is allo-
cated as a channel in which redundant information is written,
the other channels (CHO to CH4) are allocated as channels in
which data requested to be written by the host is written. The
pages of the channels CHO to CHS are used as a set to
constitute an error-correcting code. The channels CHO to
CH4 correspond to the semiconductor memory elements 58A
to 58E, respectively, and the channel CH5 corresponds to the
semiconductor memory element 58F. As will be described
later, in the case where data requested to be written by the host
is larger than the size of a page, the semiconductor memory
device 50 divides the data into a plurality of pieces, and
allocates and writes the data pieces divided in pages (referred
to as divided pieces of data) to the respective channels CHO to
CH4. That is, in the basic configuration of the embodiment,
the semiconductor memory device 50 writes a predetermined
number of pieces of data requested to be written in a prede-
termined unit and redundant information that is calculated by
using the pieces of data and is used for correcting an error of
the pieces of the data into the different semiconductor
memory elements 58, respectively, thereby constituting an
error correction code by the pieces of data and the redundant
information. As an error correction code, for example, a par-
ity code is used.

10

15

20

25

30

35

40

45

50

55

60

65

4

Here, a write method for writing to the semiconductor
memory elements 58 will be described. A NAND-type semi-
conductor memory element conventionally employs an Log-
structured method. In the Log-structured method, a block
needs to be erased before writing. Erasure of a block is to set
all bits constituting the block to “1”. The semiconductor
memory device 50 performs such erasure in units of a block
and performs writing in units of a page to the erased blocks.
Accordingly, in the NAND-type semiconductor memory ele-
ments 58, data can be sequentially written to unwritten pages
in an erased block, and written pages cannot be add pages.
Writing of data in response to the request from the host is
indicated by a logical block address used in the host. On the
other hand, writing of data and redundant information to the
semiconductor memory elements 58 is performed according
to the physical block addresses of the semiconductor memory
elements 58 in the ascending order of pages regardless of the
logical block address. The association between the physical
block address and the logical block address is stored in a
forward lookup table described later. When writing of new
data is requested by the host with the logical block address
specified in the previous data request being specified again,
the semiconductor memory device 50 writes the new data to
an unwritten page of an erased block. In this case, the page to
which writing corresponding to this logical block address is
previously performed is set to be invalid and the page to which
the new data is written is set to be valid. The semiconductor
memory device 50 writes new data and redundant informa-
tion while constructing the above-described error correction
code.

In this Log-structured method, when the number of pages
which are made invalid increases by continuing the writing,
write realizable capacity (referred to as realizable capacity) in
the semiconductor memory elements 58 becomes smaller. At
the time point when the number of new erased blocks to
which information can be written, that is, the number of
blocks to which information is not written yet after erasure
(referred to as free blocks), decreases and a set of blocks
constituting an error correction code (referred to as a logical
block) cannot be assured, a write impossible state occurs. To
prevent it, in the semiconductor memory device 50, garbage
collection is made at a proper timing. The garbage collection
made in the semiconductor memory elements 58 will be
particularly called compaction. FIG. 2 is a conceptual dia-
gram for explaining compaction. The semiconductor memory
device 50 collects data written in physical block addresses
(referred to as valid data) being not made invalid in blocks
containing the pages being made invalid, and newly rewrites
the collected valid data in free blocks to move the valid data
thereto. After that, the semiconductor memory device 50
erases the blocks, thereby generating a new free block. In the
semiconductor memory device 50, blocks that were unwrit-
able become writable again by performing such compaction,
allowing free blocks to be reserved. That is, new free blocks
are generated by performing the compaction. Further if there
is an unwritten page in a block in which valid data is written
as a result of moving data, data can be newly written to the
remaining unwritten page.

At least one free block is needed to perform such compac-
tion, which means that the capacity (referred to as imple-
mented capacity) implemented in the NAND-type semicon-
ductor memory element 58 is smaller than the capacity at
which writing can be actually realized. In the embodiment,
the difference between the implemented capacity and the
realizable capacity is referred to as spare capacity. When the
spare capacity is small, the semiconductor memory device 50
has to frequently carry out compaction, which has a great

US 9,136,020 B2

5

impact on performance thereof. Referring to FIG. 2, compac-
tion on the block unit basis has been described. In the embodi-
ment, the logical block is the basic unit, so that a free block is
reserved for each channel to constitute a logical block, and the
compaction is performed the logical block unit basis.

Next, functions implemented in the semiconductor
memory device 50 will be described with reference to FIG. 3.
The semiconductor memory device 50 includes a host inter-
face unit 60, a buffer controller 61, an address translation unit
62, a CH allocating unit 63, a compaction candidate detector
64, a management table updating unit 65, NAND controllers
66A to 66F, a data buffer 67, a compaction read queue 68, and
amanagement table 69. The function of the host interface unit
60 is realized by execution of the program by the processor 51
and the function of the SATA/SAS interface 55. The functions
of the address translation unit 62, the CH allocating unit 63,
the management table updating unit 65, the compaction can-
didate detector 64, and the buffer controller 61 are imple-
mented when the processor 51 executes the program. The
functions of the NAND controllers 66A to 66F correspond to
the NAND controllers 57A to 57F, respectively and imple-
mented by execution of the program by the processor 51 and
the functions of the NAND controllers 57A to 57F corre-
sponding to the NAND controllers 66 A to 66F, respectively.
The NAND controllers 66A to 66F correspond to the semi-
conductor memory elements 58A to 58F to which the chan-
nels CHO to CHS5 are allocated, respectively, in a one-to-one
corresponding manner. In the case where it is unnecessary to
distinguish the NAND controllers 66A to 66F from one
another, they may be simply described as the NAND control-
lers 66. The data buffer 67, the compaction read queue 68, and
the management table 69 are, for example, information stored
on the DRAM 54.

The host interface unit 60 is an interface that controls
communication between the host and the semiconductor
memory device 50. The host interface unit 60 receives a
command transmitted from the host. When the command
requests writing of data with a specified logical block address,
the host interface unit 60 transmits the command (referred to
as write command) to the address translation unit 62 which
will be described later. When the size of the data requested to
be written is equal to or less than the page size, the host
interface unit 60 transmits the data to the buffer controller 61,
which will be described later. When the size of the data is
larger than the page size, the host interface unit 60 divides the
data into pieces of units of a page, and sends the data thus
divided (referred to as divided pieces of data) to the buffer
controller 61. This is because the translation between the
logical block address and the physical block address is made
in the page unit basis. For example, the host interface unit 60
divides data of 128 KB into 32 pieces of 4-KB data. The data
or the divided pieces of data transmitted to the buffer control-
ler 61 in response to the write command is referred to as write
target data for convenience of description.

In the case where a command transmitted from the host
requests reading of data with a specified logical block
address, if the size of the data requested to be read is equal to
or less than the page size, the host interface unit 60 sends the
command (referred to as the read command) to the address
translation unit 62. In the case where the size of data requested
to beread is larger than the page size, the host interface unit 60
sends a command (read command) requesting reading of data
on the page unit basis to the address converter 62. The host
interface unit 60 calculates the logical block address of each
of pieces of data to be read by using the logical block address
specified by the command transmitted from the host, and
sends the read command requesting to read data with the

5

10

15

20

25

30

40

45

50

55

60

65

6

calculated logical block address to the address translation unit
62. The host interface unit 60 reads the data to be read which
is stored in a designated region in the data buffer 67 by the
buffer controller 61, which will be described later, and trans-
mits it to the host.

The management table 69 includes the forward-lookup
table and the bit vector table. The forward-lookup table is
stored therein identification information and region specify-
ing information associated each other. The identification
information is for associating data to be written and redun-
dancy information, and the region specifying information
specifies each of a plurality of storage regions in the semi-
conductor memory elements 58 in which the data to be writ-
ten and the redundancy information associated with each
other are written. The forward-lookup table indicates the
association between the logical address of data to be written
and the physical address indicative of a physical storage loca-
tion in which the data to be written is stored in the semicon-
ductor storage elements 58. Such a forward-lookup table is
used at the time of specifying the physical address indicative
of the location on the semiconductor storage element 58 in
which data corresponding to the logical address specified by
the host is stored. FIG. 4 is a diagram showing the data
configuration of the forward-lookup table. As shown in FIG.
4, the forward-lookup table has an L.BA table and a logical-
to-physical conversion table. The L.BA table includes the
logical address as an index and entries including the channel
number, the page number given to the page, and the logical
block number given to a logical block in which the data is
stored.

The logical block number is identification information that
associates write target physical blocks and redundant infor-
mation physical block with each other. The logical block
number, which is a unique number, is given to each of the
blocks in the sequence they were generated. The channel
number are CHO to CH4 in this embodiment, and indicates to
which channel the semiconductor memory element 58
including the physical block in which data associated with the
logical block address is stored is connected. The page number
indicates which page of the physical block identified by the
logical block number and the channel number the data asso-
ciated with the logical block address is stored in. The page
number may be given in the sequence of the physical block
addresses, or the physical block address itself may be given as
the page number, for example.

The logical-physical translation table is region specifying
information specifying a plurality of storage regions in the
semiconductor memory elements 58 in which write target
data and redundant information are to be written, and stores
therein the logical block number and the physical blocks of
channels associated with the logical block so as to be corre-
sponded to each other. The logical-to-physical translation
table stores therein the logical block number as an index,
addresses of physical blocks of the channels (physical block
addresses) being associated with the logical block are stored.
In such a configuration, using, as an index, the logical block
number stored in entries in the LBA table corresponding to
one logical block address, an entry in the logical-to-physical
translation table relating to the logical block is specified with
the index. Next, a physical block in the semiconductor
memory element 58 connected to the channel of the channel
number recorded in the entry in the LBA table is specified
from among the physical blocks stored in the entries in the
logical-to-physical translation table. The page in which the
data corresponding to the logical block address is written is
specified with the page number included in the entry in the
LBA table.

US 9,136,020 B2

7

As described above, the data required by the host to be
written is stored in the channels CHO to CH4 on the page unit
basis, and redundant information that is to be added to con-
stitute an error correction code is written in the channel CHS.
Consequently, the redundant information is written in the
storage region of the physical block address of the channel
CHS indicated by each of entries in the logical-to-physical
translation table. Since the logical block address correspond-
ing to the redundant information does not exist, an entry
relating to the redundant information is not recorded in the
LBA table. Information on redundant information is recorded
in an entry in the logical-to-physical translation table. The
forward-lookup table is updated each time write target data
and redundant information are written in the semiconductor
memory element 58. How the forward-lookup table is
updated will be described later.

Next, the bit vector table will be described with reference to
FIG. 5. The bit vector table is a table showing, in binary in the
sequence of physical blocks, which pages in each of the
physical blocks on each of the channels CHO to CH4 out of
the physical blocks associated with the logical block are
pages (referred to as valid pages) to which valid data are
written. The binary indication for each page is called a bit
vector. If the value of the bit vector is “1”, this means that the
page is a valid page, and if the value of the bit vector is “0”,
this means that the page is not a valid page (invalid). In the
initial state, the values of bit vectors are all set to “0”.

In the embodiment, channels to which write target data is
written are five channels CHO to CH4 out of the physical
blocks associated with the logical block, and if it is assumed
that one physical block includes 64 pages, one logical block
includes 320 pages. Consequently, the number of correspond-
ing bit vectors is 320 per logical block. As shown in FIG. 5,
the bit vector table includes, for each logical block, the above-
described logical block number as the index thereof, the bit
vector associated with each page included in each of the
physical blocks of the channels CHO to CH4 associated with
the logical block to which the logical block number is given,
and a counter. In the embodiment, the entries in the logical-
to-physical translation table and the bit vector in the bit vector
table are arranged in advance so that the index in the logical-
to-physical translation table matches the index in the bit vec-
tor table match. In FIG. 5, the bit vectors are arranged in the
sequence of the pages of each of the physical blocks of the
channels CHO to CH4 in such a manner that, from left, the first
page, the second page, . . ., and the last page of the channel
CHO, the first page, the second page, . . ., and the last page of
the channel CH1, and the like. The counter represents the total
number of bit vectors whose values are “1”. Since a page
whose corresponding bit vector has a value “1”is a valid page,
the counter represents the number of valid pages in a logical
block. In such a configuration, the bit vector table is updated
each time the host requests writing of data. How the bit vector
table is updated will be described later.

The description refers back to FIG. 3. The address transla-
tion unit 62 receives a command from the host interface unit
60. When the command is a read command, the address
translation unit 62 refers to the forward-lookup table in the
management table 69 using the logical block address speci-
fied by the read command, and determines a channel and a
physical block address of a page in which data requested to be
read by the read command is written. The address translation
unit 62 specifies a channel and a physical block address and
sends a command requesting to read data to the NAND con-
troller 66 via the CH allocating unit 63. In contrast, when the
command received from the host interface unit 60 is a write

10

15

20

25

30

35

40

45

50

55

60

65

8

command, the address translation unit 62 sends the write
command to the CH allocating unit 63 which will be
described later.

In response to a compaction read command stored in the
compaction read queue 68 which will be described later, the
address translation unit 62 sends a command requesting to
read data (valid data) in a valid page with a physical address
specified by the compaction read command to the NAND
controller 66 corresponding to the channel to which the semi-
conductor memory element 58 with the physical block
including the valid page is connected, by referring to the
forward-lookup table. The valid data is read from the semi-
conductor memory element 58 via the NAND controller 66
and stored in the data buffer 67 via the buffer controller 61.
The address translation unit 62 sends the command request-
ing to write the valid data (referred to as compaction write
command) to the CH assigning unit 63.

The CH allocating unit 63 receives the command from the
address translation unit 62, and when the command is a write
command, determines the channel to which write target data
is to be written. For example, the CH allocating unit 63
performs writing operation in round-robin manner in 4 KB in
channels other than the channel to which redundant informa-
tion is written (in this case, the channel CHS) and determines
the channel to which data is written in accordance with the
order of round robin. Then, the CH allocating unit 63 sends
the command requesting to write the write target data to the
NAND controller 66 corresponding to the determined chan-
nel. In contrast, in the case where reading of data is requested
with a specified channel and a specified physical block
address by a command from the address translation unit 62, a
command requesting to read data with the specified physical
block address is transmitted to the NAND controller 66 cor-
responding to the designated channel. In the case where a
command received from the address translation unit 62 is a
compaction write command, the CH allocating unit 63 deter-
mines a channel to which data is to be written in accordance
with the order of round robin and sends a command request-
ing to write valid data to the NAND controller 66 correspond-
ing to the determined channel.

The NAND controller 66 receives the command from the
CH allocating unit 63 and accesses the corresponding semi-
conductor memory element 58 according to the command.
Concretely, when the command requests to write data, the
NAND controller 66 obtains write target data via the buffer
controller 61 and writes the write target data to the semicon-
ductor memory element 58. In the writing, the NAND con-
troller 66 sets a write pointer to sequentially point a writing
location, page by page, out of unwritten page in an erased
block of the corresponding semiconductor memory element
58, writes the write target data to a page at a location pointed
by the write pointer, and then updates the write pointer to
point a location of an unwritten page which is the next page
subsequent to the page subjected to the writing. Therefore, the
value of the write pointer changes to sequentially point the
next write location. For example, when a block is identified
by a physical block address of 15 bits in each channel and the
block includes 64 pages, the write pointer has 15+6=21 bits in
total.

Here, the data configuration of write target data and redun-
dant information will now be described. The NAND control-
ler 66 adds an error correction code (referred to as page ECC)
for detecting and correcting an error of the write target data
itself and a logical block address specified by a write com-
mand to the write target data. It is assumed that the page ECC
includes codes such as a CRC code for detecting an error in
data and an ECC code to correct the data error. The reason

US 9,136,020 B2

9

why the page ECC also includes a CRC code is that there is
the possibility of miss-correction when the data is corrected
to the wrong data. FIG. 6 is a diagram illustrating write target
data to which redundant information is added. In the semi-
conductor memory elements 58 ofthe channels determined as
described above, the NAND controller 66 writes the write
target data to which such a page ECC and the logical block
address are added to a page pointed by the write pointer in the
semiconductor memory element 58 in each channel deter-
mined as described above. The write target data has a size in
a unit of pages. It is assumed that the page size of the semi-
conductor memory element 58 equals the size of the entire
data including the write target data and the added page ECC
and logical block address. The logical block address of each
of divided pieces of data is calculated by each NAND con-
troller 66 on the basis of the logical block address specified by
the write command. In contrast, the NAND controller 66F
corresponding to the channel CHS5 to which redundant infor-
mation calculated so as to constitute the error correction code
is written adds the page ECC for detecting and correcting an
error of redundant information itself to the redundant infor-
mation. The NAND controller 66F writes the redundant infor-
mation to which the page ECC is added into the page in the
semiconductor memory element 58F pointed by the write
pointer.

Next, writing of a plurality of divided pieces of data as
write target data to the channels CHO to CH5 by round-robin
processing will be described. FI1G. 7 is a diagram for explain-
ing writing performed by the round-robin processing. For
simplification of the diagram, the logical block addresses
added to the divided pieces of data are not shown. As shown
in the diagram, the divided pieces of data is written sequen-
tially in the round-robin manner from the channel CHO to the
channel CH4 in a manner such that first divided data D1 is
written to the channel CHO at time T1 and the next divided
data D2 is written to the channel CHI1 at time T2. When
divided data D5 is written in the channel CH4 at time T5,
parity P of the divided data D1 written in the channel CHO at
time T1, the divided data D2 written in the channel CH1 at
time T2, the divided data D3 written in the channel CH2 at
time T3, the divided data D4 written in the channel CH3 at
time T4, and parity P of the divided data D5 written in the
channel CH4 at time TS5 is calculated as redundant informa-
tion, and the redundant information P is written in the channel
CHS. At the time of further writing of divided pieces of data,
the data is written sequentially in the round-robin manner
from the channel CHO. By writing the divided pieces of data
in the round-robin manner, writing operation of the channels
are uniformly performed. In the example of the diagram, a
state where data is written in order of the channels with lapse
of time is shown. However, the invention is not limited to the
example. Data may be written simultaneously to two or more
channels.

Next, the configuration of the error correction code will be
described with reference to FIG. 8. For convenience of expla-
nation, in the diagram, the logical block addresses added to
the divided pieces of data to be written in each of the channels
CHO to CH4 are not shown. As shown in FIG. 8, the NAND
controller 66F corresponding to the channel CHS5 calculates
the exclusive OR in bytes at the same offset location in pieces
of data written in the channels CHO to CH4, and writes the
value thus calculated as redundant information in the same
offset location in the semiconductor memory element 58F of
the channel CHS. That is, an error correction code is consti-
tuted by the bytes at the same offset location in the channels
CHO to CHS.

20

25

30

40

45

10

The description refers back to FIG. 3. When the command
received from the CH allocating unit 63 requests to read data
with a specified physical block address, the NAND controller
66 reads data from a location corresponding to the physical
block address in the semiconductor memory element 58 using
the physical block address, and sends the read data to the
buffer controller 61. If there is an error in the data read from
the semiconductor memory element 58, the NAND controller
66 detects the error and corrects it. A method of detecting and
correcting an error in data will be described later. When the
command received from the address translation unit 62
requests to read data (valid data) in a valid page with a speci-
fied physical block address, the NAND controller 66 reads
data written in a page corresponding to the physical block
address in the semiconductor memory element 58 by using
the physical block address, and stores the read data in the data
buffer 67. When the command received from the CH allocat-
ing unit 63 requests to write valid data, the NAND controller
66 retrieves write target valid data via the buffer controller 61
and writes the valid data to the semiconductor memory ele-
ment 58.

The compaction candidate detector 64 refers to the bit
vector table included in the management table 69, determines
a logical block to be a candidate for compaction, and sends a
command (referred to as compaction read command) speci-
fying the physical block address of a valid page in the logical
block and requesting to read the valid page to the compaction
read queue 68.

The data buffer 67 is a buffer for storing the write target
data. The compaction read queue 68 is a first-in first-out
buffer that stores a command requesting to read a valid page
for compaction.

The buffer controller 61 manages the data buffer 67 as a
plurality of regions and manages the regions in which data
corresponding to the command are stored. Concretely, the
buffer controller 61 stores write target data sent from the host
interface unit 60 in response to a write command into the data
buffer 67, and sends the write target data to the NAND con-
troller 66 corresponding to the channel determined to be
written by the CH allocating unit 63. The write target data is
written in the semiconductor memory element 58 via the
NAND controller 66. The buffer controller 61 stores the data
sent from the NAND controller 66 into a specified region in
the data buffer 67 in response to the read command, and then
sends the data to the host interface unit 60. The data is trans-
mitted to the host via the host interface unit 60. In response to
the compaction read command, the buffer controller 61 stores
data read from the semiconductor memory element 58 via the
NAND controller 66 into the data buffer 67.

In the case where a command (write command) requesting
to write data with a specified logical block address is received
from a host, the management table updating unit 65 refers to
the forward-lookup table, updates the bit vector table, and
further updates the forward-lookup table. Concretely, the
management table updating unit 65 first refers to the forward-
lookup table to look up the physical block address corre-
sponding to the logical block address. Namely, the manage-
ment table updating unit 64 looks up which page of the
physical block the data associated with the logical address has
been written in. If the physical block address associated with
the logical block address is not stored in the forward-lookup
table, writing of data associated with the logical block address
has not been performed. In this case, the management table
updating unit 65 sets the value of the bit vector corresponding
to the page to which the write target data associated with the
logical block address is written in the bit vector table to “1”.

US 9,136,020 B2

11

The page to which the write target data is written is pointed by
the write pointer. The management table updating unit 65
increments the value of a counter of the number of valid pages
in the logical block associated with the physical block includ-
ing the page by 1.

In contrast, if the physical block address associated with
the logical block address exists in the forward-lookup table
when the management table updating unit 65 refers to the
forward-lookup table, writing of the data associated with the
logical block address has been performed before. In this case,
it is necessary to invalidate the data written before due to the
write command for the present writing. For this purpose, the
management table updating unit 65 sets the value of the bit
vector corresponding to the page at the physical block address
stored in the entries of the forward-lookup table referred to for
the logical block address specified by the write command to
“0”. In addition, the management table updating unit 65 dec-
rements by 1 the value of a counter which indicates the
number of valid pages in the logical block with the physical
block that includes the page. The management table updating
unit 65 sets the value of the bit vector corresponding to the
page to which the write target data is to be written to “1”, and
increments by 1 the value of a counter of the number of valid
pages in a logical block associated with the physical block
that includes the page. By performing updating each time
writing of data is performed, the bit vector table and the
counter of the number of valid pages always indicate the
locations of valid pages and the number thereof. Finally, the
management table updating unit 65 records the physical
block address to which write target data is written in an entry
corresponding to the logical block address in the forward-
lookup table.

Next, procedures of processes performed by the semicon-
ductor memory device 50 according to the embodiment will
be described. First, procedures of writing the write target data
in the semiconductor memory element 58 by the semiconduc-
tor memory device 50 in response to a write command from a
host will be described with reference to FIG. 9. Before start-
ing the writing, the semiconductor memory device 50
reserves free blocks for channels in advance. When a write
command requesting to write data with a specified logical
block address is received from the host (step S1), the semi-
conductor memory device 50 selects one free block in each of
the channels and constitutes a logical block by associating the
free blocks of the channels CHO to CH5. When a write com-
mand requesting to write data with a specified logical block
address is received from the host and there is no unwritten
page left in the ongoing logical block, the semiconductor
memory device 50 may secure the free block. When there is
any unwritten pages left in the ongoing logical block, the
semiconductor memory device 50 does not secure the free
block and writes the data into the unwritten page in the logical
block. The semiconductor memory device 50 gives a logical
block number to the logical block and records the logical
block number as an index and the respective physical block
addresses, which are associated with the logical block, of the
physical blocks in the channels into a logical-to-physical
translation table. At this time, the semiconductor memory
device 50 arranges the sorting order of logical-to-physical
translation table entries, the sorting order of the physical
block addresses of the physical blocks in the channels in the
logical-to-physical translation table entries, and bit vectors in
a bit vector table so that a bit vector of each physical block
associated with the logical block can be referred to by using
the index in the logical-to-physical translation table. The
semiconductor memory device 50 sets, for each channel, the
write pointer indicative of a page of each physical block to

5

10

20

25

30

35

40

45

50

55

60

65

12

which data is to be written, together with the physical block
address, which is associated with the logical block, in each
physical block. Before starting writing, the semiconductor
memory device 50 sets the write pointer of each channel so as
to point the first page of the physical block at the head of the
channel.

The semiconductor memory device 50 determines whether
the size of data requested to be written by the write command
is equal to or less than the page size or not (step S2). In the
case where the page size is equal to or less than the size of a
page (YES in step S2), the semiconductor memory device 50
stores the data (write target data) in the data buffer 67 (step
S4). In contrast, in the case where the size of data requested to
be written by the write command is larger than the page size
(NO in step S2), the semiconductor memory device 50
divides the data into pieces in units of a page (step S3) and
records the divided pieces of data (write target data) into the
data buffer 67 (step S4).

The semiconductor memory device 50 refers to the for-
ward-lookup table on the basis of a logical block address
specified by the write command and, when a physical block
address corresponding to the logical block address of the
write target data has been already recorded therein, the semi-
conductor memory device 50 stores the physical block
address as an old physical block address in the DRAM 54, for
example (step S5). The semiconductor memory device 50
determines channels to which the write target data is to be
written in round-robin manner (step S6) and writes the write
target data with a page ECC and the logical block address
added thereto to a page pointed by the write pointer in the
semiconductor memory element 58 of the determined chan-
nel (step S7). Then, the semiconductor memory device 50
updates the write pointer of each channel to point a next
unwritten page following the page to which the write target
data is written (step S8).

FIG. 10 is a diagram showing a state where the divided
pieces of data is written as write target data in the channel
CHO with lapse of time. First, at time t0, a free block is
reserved. At time t1, first divided data D1 is written in the first
page (at the head or at the end) in the free block reserved at
time t0. At time t2, newly-determined divided data D6 is
written in the second page in the channel CHO in the round-
robin manner. Similarly, at time t3, divided data D11 is writ-
ten in the third page. At time t4, divided data D16 is written in
the fourth page. In such a manner, pages to which divided
pieces of data are written are determined in ascending order in
the physical block regardless of the logical block address. The
write pointer is set each time writing is performed so as to
point a page to which data is written in the ascending order. In
the embodiment, writing operations to the channels are per-
formed uniformly in the round-robin manner, so that the
difference between the page numbers pointed by the write
pointer in each channel is 1 at the maximum. When the
writing is finished on the final page in the logical block, the
page numbers pointed by the write pointers in the channels
are the same.

As described above, regardless of the value of a logical
block address specified by a write command from a host, the
physical block addresses of pages to which write target data
are allocated in a ascending order, and data is written in the
pages.

The description refers back to FIG. 9. As write target data
is written, the semiconductor memory device 50 records the
association between the logical block address of write target
data and the physical block address of the page to which the
write target data is written into the forward-lookup table
illustrated in FIG. 4 (step S9). If the write target data is

US 9,136,020 B2

13

divided pieces of data, the semiconductor memory device 50
calculates each of'the physical block addresses of the divided
pieces of data on the basis of the logical block address speci-
fied by the write command. Since the divided pieces of data
are in units of a page, the semiconductor memory device 50
calculates values obtained by sequentially adding the page
size (4 KB) to the specified logical block address as the
logical block addresses of the divided pieces of data. Then,
the semiconductor memory device 50 records the logical
block address, the logical block number of the logical block
associated with the physical block of each of channels to
which the write target data is written is associated, and the
channel number and page number indicating the channel and
page to which the write target data is written in the current
process into the LBA table. In the above-described example,
the page number is indicated by lower six bits of the write
pointer before updating, so that the value may be used as the
page number. Each time writing of write target data is per-
formed, the semiconductor memory device 50 updates the
forward-lookup table as described above.

Further, the semiconductor memory device 50 refers to the
bit vector table, sets the value of the bit vector corresponding
to the page of the old physical block address stored in the
DRAM 54 in step S5 to “0”, and decrements the value of the
counter of the number of valid pages of the logical block
associated with the physical block that includes the page by 1
(step S10). The old physical block address indicates a page to
which data was previously written in association with the
logical block address specified by the write command
received in step S10. Further, the semiconductor memory
device 50 sets the value of the bit vector corresponding to the
page to which the write target data is written in step S7 to “1”,
and increments the value of the counter of the number of valid
pages of the logical block that includes the page by 1 (step
S11). In such a manner, the semiconductor memory device 50
updates the bit vector table as the write target data is written.

In step S7, after writing of the write target data to the
channels CHO to CH4 is finished, the semiconductor memory
device 50 calculates the exclusive OR in bytes at the same
offset location in the write target data in the channels CHO to
CH4 and writes this value in the same offset location in the
channel CH5, thereby writing redundant information. Alter-
natively, the semiconductor memory device 50 may start cal-
culating the exclusive OR while writing the write target data
to the channels CHO to CH4.

In the case where the write pointer reaches the end of the
block in all of the channels (CHO to CH5) and data becomes
unable to be newly written in the logical block, the semicon-
ductor memory device 50 constructs a new logical block. A
method of constructing a logical block is as described above.
A method of writing divided pieces of data and redundant
information to the new logical block is also as described
above.

Next, procedures of reading data from the semiconductor
memory element 58 by the semiconductor memory device 50
in accordance with a read command from a host will be
described with reference to FIG. 11. When a read command
requesting to read data with a specified logical block address
is received from the host (step S20), the semiconductor
memory device 50 determines whether the size of data
requested to be read by the read command is equal to or less
than the page size (step S21). In the case where the size of the
data is equal to or less than the page size (YES in step S21),
the semiconductor memory device 50 refers to the LBA table
of'the forward-lookup table by using the logical block address
specified by the read command and determines the logical
block number. Next, the semiconductor memory device 50

10

15

20

25

30

35

40

45

50

55

60

65

14

refers to a logical-to-physical translation table by using the
determined logical block number and determines a channel, a
physical block and a page from which the data is to be read
(step S23). The semiconductor memory device 50 reads the
data from the semiconductor memory element 58 corre-
sponding to the determined channel (step S24).

In contrast, in the case where the size of data requested to
be read by the read command is larger than the page size (NO
in step S21), the semiconductor memory device 50 divides
reading so that data to be read becomes pieces of data in page
units. That is, the semiconductor memory device 50 calcu-
lates each of the logical block addresses of the pieces of data
to be read by using the logical block address specified by the
read command (step S22). The semiconductor memory
device 50 refers to the LBA table of the forward-lookup table
and determines each of the logical block numbers using each
of the calculated logical block addresses. Next, the semicon-
ductor memory device 50 refers to the logical-to-physical
translation table and determines each of the channels, the
physical blocks, and the page from which the data is to be read
(step S23) using each of the determined logical block num-
bers. The semiconductor memory device 50 reads the pieces
of data from the semiconductor memory elements 58 corre-
sponding to the determined channels (step S24).

Validity of the data read in step S24 is ensured by a page
ECC added to the data. That is, the semiconductor memory
device 50 detects an error in the data and can correct it by
using the page ECC added to the read data. However, when
there may be an error that cannot be corrected with the page
ECC or miss-corrected with the page ECC, there is the pos-
sibility that a failure occurs in the semiconductor memory
element 58 and abnormality occurs in data. In such a case (NO
in step S25), the semiconductor memory device 50 refers to
the forward-lookup table, determines a logical block associ-
ated with the physical block of the channel from which the
data has been read using the logical block address used in
reading of data (step S27), reads other pieces of data and
redundant information written in the physical blocks of other
channels associated with the determined logical block, and
restores the data including the uncorrectable error by using
the other pieces of data and the redundant information.

FIG. 12 is a diagram showing a state of restoring data
which becomes abnormal due to a failure which occurs in the
semiconductor memory element 58 of the channel CH3 as an
example. Concretely, the semiconductor memory device 50
reads the other pieces of data and redundant information
(pieces of data written in the channels CH0, CH1, CH2, and
CH4 and redundant information written in the channel CH5)
written in the physical blocks of channels other than the
physical block associated with the logical block determined
in step S27 and the physical block from which the erroneous
data which cannot be corrected is read. The semiconductor
memory device 50 restores the data in the channel CH3 by
obtaining the exclusive OR at the same offset in the other
pieces of data and the redundant information, that is, the
exclusive OR in bytes at the same offset location. The semi-
conductor memory device 50 stores the restored data in the
data buffer 67 (step S28) and advances to step S29.

Since there is a high possibility that abnormality occurs in
a page from which erroneous data is read, the semiconductor
memory device 50 newly writes the restored data to a differ-
ent page. The semiconductor memory device 50 updates the
bit vector table and the forward-lookup table by using the
logical block address used in reading of data. The method of
updating the tables is as described above. As a result of the
updating, the bit vector of the page from which erroneous data
is read is updated to “0”, the bit vector of the page in which the

US 9,136,020 B2

15

restored data is written is updated to “1”, and the physical
block address of the page in which the restored data is written
is recorded in a entry of the forward-lookup table for the
logical block address specified by the read command.

In the case where there is no error in the data read in step
S24, the semiconductor memory device 50 stores the data in
a specified region in the data buffer 67 and advances to step
S29. Even if there is an error in data read in step S24, the
semiconductor memory device 50 corrects the data with the
page ECC (step S26), stores the corrected data in a specified
region in the data buffer 67, and advances to step S29. In step
S29, the semiconductor memory device 50 transmits the data
stored in the designated region in the data buffer 67 to the
host.

When reading of a plurality of pieces of data is requested
by a read command received in step S20, the semiconductor
memory device 50 may read data from physical blocks of
channels associated with different logical blocks in accor-
dance with logical block addresses specified by the com-
mand. Since the channels can be independently accessed at
the time of reading data as described above, the data can be
read in response to a request from the host and transmitted to
the host with high responsibility.

Next, procedures of moving valid data written in a logical
block to be subjected to compaction to a free block will be
described with reference to FIG. 13. The semiconductor
memory device 50 sets “M=4096" as the maximum value of
the number of valid pages, and sets “K=0" as an index of an
entry of each logical block in a bit vector table (step S40). The
semiconductor memory device 50 sequentially reads the
value of the counter of the number of valid pages for each
logical block one by one by referring to the bit vector table
(step S41) and determines whether the value of the counter is
smaller than M or not (step S42). In the case where the value
of'the counter of the number of valid pages is equal to or larger
than M (NO in step S42), the device advances to step S44. In
the case where the value of the counter of the number of valid
pages is smaller than M (YES in step S42), the semiconductor
memory device 50 replaces the value of M with the value of
the counter and in step S41, sets the value of the index of the
entry with which the value of the counter of the number of
valid pages is read as K (step S43), and advances to step S44.

In step S44, the semiconductor memory device 50 deter-
mines whether or not the value of the counter of the number of
valid pages has been read with respect to all of the logical
blocks in the bit vector table. In the case where the value of the
counter of the number of valid pages is read with respect to all
of the logical blocks (NO in step S44), the semiconductor
memory device 50 increments the value of K by 1 (step S45)
and returns to step S41. In step S41, the semiconductor
memory device 50 reads the value of the counter of the num-
ber of valid pages in the logical blocks which are not read yet
in the order of K in the bit vector table. In contrast, in the case
where the value of the counter of the number of valid pages
has been read with respect to all of the logical blocks (YES in
step S44), the semiconductor memory device 50 sets the value
of K as the index of a logical block as a candidate to be
subjected to compaction in the logical-to-physical translation
table (step S46). As described above, since the entries are
arranged so that the bit vector table can be referred to using
the index of the logical-to-physical translation table, the
index K of the entry in the bit vector table can be used as the
index of the entry in the logical-to-physical translation table.
The semiconductor memory device 50 determines data (valid
data) stored in a page (valid page) whose bit vector in the bit
vector table indicates “1”” with respect to each of the physical
blocks in the channels CHO to CH4 associated with the logical

20

35

40

45

55

16

block of the entry indicated by the index K in the logical-to-
physical translation table and reads all of the valid data to the
databuftfer 67. The semiconductor memory device 50 extracts
the logical block address added to the valid data (step S47).

The semiconductor memory device 50 writes each piece of
the valid data read in step S47 in a manner similar to the
writing of data performed in response to the write command
as described above. That is, the semiconductor memory
device 50 determines a channel to which the valid data is to be
written from the channels CHO to CH4 in the round-robin
manner and writes the valid data to a page indicated by the
write pointer in an erased block in the semiconductor memory
element 58 in the channel. After that, the semiconductor
memory device 50 updates the write pointer so as to point a
next unwritten page following the page to which the valid data
is written. The redundant information is calculated on the
basis of the data written in the channels CH0 to CH4 and is
written in the channel CHS. The semiconductor memory
device 50 records the association between the logical block
address added to the written valid data and the physical block
address of the page in which the valid data is written into the
forward-lookup table to update the table (step S48). The
method of updating the forward-lookup table is as described
above. In the compaction, by updating the forward-lookup
table, the association between the logical block address and
the physical block address of data can be always held nor-
mally. Since a logical block address is added to data, the
association between the logical block address and a physical
block address in which the data is written can be easily
updated in performing the compaction.

When reading from the data buffer 67 of data in all of'valid
pages loaded to the data buffer 67 is finished (YES in step
S49) and the writing to the semiconductor memory element
58 is finished, the semiconductor memory device 50 performs
erasing operation on the physical blocks in the channels CHO
to CHS5 associated with the logical block as candidates to be
subjected to compaction in step S46, and finishes the com-
paction process.

The timing of performing the compaction process may be,
for example, a timing when the number of free blocks that is
obtained by a check upon constitution of the logical block
becomes equal to or less than a predetermined number.

As described above, in the configuration of using a plural-
ity of semiconductor memory elements so that data can be
accessed even when any of the semiconductor memory ele-
ments is faulty, data is written on the page unit basis. Data
larger than the page size is divided in units of a page. After
that, the divided pieces of data are allocated to the semicon-
ductor memory elements 58 and written to the pages in each
of the semiconductor memory elements 58 so that writing
operations to the semiconductor memory elements 58 are
uniformly performed. By writing redundant information for
data written to the pages in the plurality of semiconductor
memory eclements into pages of a single semiconductor
memory element, an error correction code is constituted by
the pages of the plurality of semiconductor memory elements.
Data reading is performed on the page unit basis and, when
abnormality occurs in data, it is regarded that abnormality
occurs in a page in a semiconductor memory elements 58 to
which the data is written, data is restored by using an error
correction code constituted among the semiconductor
memory device includes the abnormal page and the other
semiconductor memory elements.

With such a configuration, with respect to writing of data to
a plurality of pages (five pages in the above-described
example), pages used for writing of redundant information
corresponding to the data can be suppressed to fewer pages

US 9,136,020 B2

17

(one page in the above-described example) than used for
writing of data. In contrast, in RAID of an HDD, with respect
to writing of data of one page, writing of redundant informa-
tion corresponding to the data is one page. In the embodiment,
the writing of redundant information can be suppressed to
1/N (one fifth in the above-described example). As described
above, since the number of writing times is limited in a
semiconductor memory element of an NAND type, while
suppressing the number of times of writing redundant infor-
mation, the reliability of the semiconductor memory device
50 can be improved.

In the RAID of an HDD, when abnormality occurs in data,
it is regarded that the entire HDD in which the data is stored
becomes faulty, the HDD is detached, and the data is restored
with an error correction code constituted among the HDD
storing the fault data therein and other HDDs. In the embodi-
ment, even when abnormality occurs in data, it can be handled
as a failure of a block or a page as a part of the semiconductor
memory element, not as a failure of the entire semiconductor
memory element. Consequently, an error in a smaller unit can
be also handled. Even when an entire semiconductor memory
element becomes faulty, data written in the semiconductor
memory element can be restored with an error correction
code constituted among the semiconductor memory element
storing the fault data therein and other semiconductor
memory elements. Therefore, extremely high reliability can
be realized.

With such a configuration, even when abnormality occurs
in data due to a failure or the like in a semiconductor memory
element, the data can be restored with an error correction
code. Consequently, the reliability of the semiconductor
memory device 50 can be improved, and increase in the
number of writing times of a semiconductor memory element
which is limited can be suppressed.

In the embodiment, by providing the bit vector table, com-
paction can be efficiently performed at high speed. To per-
form compaction, the semiconductor memory device 50 has
to identify a valid page in which valid data is written in a
block, obtain a logical block address corresponding to the
valid page, move the valid data, and perform an updating
process of associating the logical block address with a physi-
cal block address of a page to which the data is moved.
Identification of a valid page and updating of a physical block
address can be performed via a forward-lookup table. How-
ever, the forward-lookup table is constituted by being opti-
mized to a search using a logical block address as an index.
Consequently, identification of a valid page and updating of a
physical block address via a forward-lookup table at the time
of performing compaction causes increase in penalty in
search time.

A logical block subjected to be compaction has desirably
small number of valid pages. This reason is that, by moving a
valid page by compaction, a number of free blocks are
obtained. To select a logical block having small number of
valid pages, an entry having small number of bit vectors
having a value of “1” may be selected. To count the number of
bit vectors having a value of “1”, for example, population
computation (counting of the number of bits having a value of
“1” in a word) may be provided. However, when the bit width
of an entry is large (320 bits in the example), it is difficult to
calculate the number of bits in one cycle. Consequently, in the
embodiment, the semiconductor memory device 50 updates
the value of the counter of the number of valid pages shown in
FIG. 5 in accordance with a change in the value of the bit
vector. At the time of retrieving a logical block to be subjected
to compaction, by retrieving an entry having the smallest
number of the counter of valid pages in the bit vector table, the

10

15

20

25

30

35

40

45

50

55

60

65

18

logical block is obtained. An entry in which the value of the
counter of the number of valid pages is the smallest can be
retrieved by once reading each of the values of the counters of
the number of valid pages of entries related to all of logical
blocks. Therefore, in the semiconductor memory device 50 in
the embodiment, by referring to the bit vector table, a logical
block having small number of valid pages can be easily
retrieved, and compaction can be performed efficiently at
high speed.

[Modifications]

The invention is not limited to the embodiment presented
above, but may be embodied with various modified compo-
nents in implementation without departing from the spirit of
the inventions. Further, the invention can be embodied in
various forms by appropriately combining a plurality of com-
ponents disclosed in the embodiment. For example, some of
the components presented in the embodiment may be omit-
ted. Further, some components in different embodiments may
be appropriately combined. In addition, various modifica-
tions as described as examples below may be made.

In the above-described embodiment, various programs
executed in the semiconductor memory device 50 may be
stored on a computer connected to a network such as the
Internet, and provided by being downloaded via the network.
The various programs may be recorded in computer readable
recording medium such as a CD-ROM, a flexible disk (FD), a
CD-R, or a digital versatile disk (DVD) in a form of a file that
can be installed or executed, and provided as a computer
program product.

In the above-described embodiment, a part of the function
of the processor 51 may be implemented by hardware. The
semiconductor memory device 50 may have a plurality of
processors 51, and the above-described functions may be
implemented by the plurality of processors 51. With such a
configuration, higher processing speed can be achieved.

In the above-described embodiment, the forward-lookup
table and the bit vector table are stored in the DRAM 54, but
the invention is not limited thereto. For example, the tables
may be stored in the semiconductor memory element 58 and
cached in the DRAM 54 when the tables are used by the
processor 51.

In the above-described embodiment, an ECC code is added
to each data in a unit of a page as a page ECC. However, the
ECC code may be added to a unit smaller than a page (for
example, a unit of a sector of 512 bytes). With such a con-
figuration, in the case where an error in data cannot be cor-
rected in a unit smaller than a page, it may be regard that
abnormality occurs in the data and restore the data by using an
error correction code made by a plurality of channels.

In the above-described embodiment, a unit of constituting
an error correction code by a plurality of channels is set as a
byte, but the invention is not limited thereto and may use a
size larger or smaller than byte as a unit. Although a parity
code is used as an error correction code, the invention is not
limited to the parity code. A plurality of pieces of redundant
information may be set and a Reed Solomon code may be
used. With the Reed Solomon Code, data in which abnormal-
ity occurs due to failures in a plurality of semiconductor
memory elements 58 can be restored.

In the above-described embodiment, the number of chan-
nels to which data is written is four, the number of channels to
which redundancy information for the data is written is one,
and the number of channels constituting an error correcting
code is five, but the invention is not limited thereto. Further, in
the above-described embodiment, the channel to which
redundancy information constituting an error correcting code
is written is fixed to the channel CHS, but the invention is not

US 9,136,020 B2

19

limited to the channel. The channels may be allocated to units
each constituting an error correction code.

In the above-described embodiment, the channels corre-
spond one-to-one to the semiconductor memory elements 58,
but the invention is not limited thereto. The channels may
correspond one-to-multiple to the semiconductor memory
elements 58, that is, a plurality of semiconductor memory
elements 58 may be allocated to one channel. In this case,
identification numbers for identifying the respective semi-
conductor memory elements 58 are allocated to the semicon-
ductor memory elements 58. The identification numbers and
physical block addresses are recorded for each block of each
channel. For example, if eight semiconductor memory ele-
ments are allocated to each channel, a total of 15 bits includ-
ing 3 bits for identifying the semiconductor memory elements
and 12 bits for identifying 4,096 blocks included in each
semiconductor memory element are recorded as the identifi-
cation number and the physical block address of each of
blocks of each channel in the logical-to-physical translation
table.

In the foregoing embodiment, to simplify mounting of the
logical-to-physical translation table, desirably, the number of
entries in the logical-to-physical translation table and the
number of blocks in each channel. Since the number of entries
on the logical-to-physical translation table and the number of
physical blocks in the channel CHO are equal to each other,
the logical-to-physical translation table may be constructed
so that a location where an entry of a logical block is recorded
can be determined by the physical block number of the physi-
cal block in the channel CHO. The physical block numbers are
given, for example, in ascending order to physical blocks
included in the channel. In this case, the physical block num-
ber of the physical block in the channel CHO may be set as the
logical block number serving as an index of the logical-to-
physical translation table. Alternately, entries in the logical-
to-physical translation table may be recorded in a free list
structure.

In the above-described embodiment, the semiconductor
memory device 50 adds a logical block address to write target
data in the semiconductor memory element 58. However, the
semiconductor memory device 50 may further include a
physical-to-logical translation table (different from the logi-
cal-to-physical translation table) showing association
between the physical block address, as an index, of data
written in the semiconductor memory element 58 and the
logical block address of the data, instead of adding the logical
block address. Then, in compaction, the semiconductor
memory device 50 may use the physical block address of
valid data read from the semiconductor memory element 58,
refer to the physical-to-logical translation table to obtain the
logical block address corresponding to the physical block
address, and update the forward-lookup table as a result of
compaction using the obtained logical block address.

In the above-described embodiment, when allocating
channels to the write target data, in the case where a state
where there is no write target data continues for predeter-
mined time after allocating data to at least one of the channels
CHO to CH3, dummy data (for example, data whose bits are
all “0”) in a corresponding page in a channel to which the
write target data is not allocated out of the channels CH1 to
CH4, and redundant information calculated by using data in
corresponding pages in the channels CH1 to CH4 is written in
the corresponding page in the channel CH5. With such a
configuration, the possibility such that an error correction
code is not constituted for data in a channel to which data has
been already written in corresponding pages in the channels

20

40

45

50

60

20

CHO to CH4 and, when an error occurs in the data, the data
cannot be restored can be avoided.

According to the present invention, while suppressing
increase in the number of times of writing data to semicon-
ductor memory chips, a failure in the semiconductor memory
chips can be addressed, and reliability can be improved.

While certain embodiments have been described, these
embodiments have been presented by way of example only,
and are not intended to limit the scope of the inventions.
Indeed, the novel embodiments described herein may be
embodied in a variety of other forms; furthermore, various
omissions, substitutions and changes in the form of the
embodiments described herein may be made without depart-
ing from the spirit of the inventions. The accompanying
claims and their equivalents are intended to cover such forms
or modifications as would fall within the scope and spirits of
the inventions.

What is claimed is:

1. A controller that writes data into a plurality of semicon-
ductor memory chips, the data having N pieces of first data in
a predetermined unit,

the controller comprising:

a write controller configured to write each of the N pieces
of the first data and redundancy information into differ-
ent semiconductor memory chips, the redundancy infor-
mation by using the written N pieces of the first data,
each of the N pieces of the first data including page error
correcting information, which detects and corrects a
memory error; and

a storage unit configured to store therein identification
information and region specifying information so as to
be associated with each other, the identification infor-
mation associating the N pieces of the first data and the
redundancy information, and the region specifying
information specifying a plurality of storage regions in
the semiconductor memory chips to which the N pieces
of the first data and the redundancy information associ-
ated with each other are written, wherein

the redundancy information is obtained by calculating an
exclusive OR in bytes at respective corresponding offset
locations in the N pieces of the first data, and

when the memory error is not corrected by using the page
error correcting information, each of the N pieces of the
first data is restored by calculating an exclusive OR in
bytes at respective corresponding offset locations in the
redundant information and remaining pieces of the first
data.

2. A controlling method for writing data into a plurality of
semiconductor memory chips, the data having N pieces of
first data in a predetermined unit,

the method comprising:

writing each of the N pieces of the first data and redun-
dancy information into different semiconductor
memory chips, and calculating the redundancy informa-
tion by using the written N pieces of the first data, each
of the N pieces of the first data including page error
correcting information, which detects and corrects a
memory error; and

storing identification information and region specifying
information so as to be associated with each other, the
identification information associating the N pieces of the
first data and the redundancy information, and the region
specifying information specifying a plurality of storage
regions in the semiconductor memory chips to which the
N pieces of the first data and the redundancy information
associated with each other are written, wherein

US 9,136,020 B2
21 22

the redundancy information is obtained by calculating an
exclusive OR in bytes at respective corresponding offset
locations in the N pieces of the first data, and

when the memory error is not corrected by using the page
error correcting information, each of the N pieces of the 5
first data is restored by calculating an exclusive OR in
bytes at respective corresponding offset locations in the
redundant information and remaining pieces of the first
data.

10

